THOUGHTS AND CROSSES

TOPIC: volume and surface area

		A pepper pot consists of a cylinder and a hemisphere. The cylinder has a diameter of 5 cm and height of 7 cm . The pepper inside the pot takes up half of the total volume of the entire pot. Find the depth of the pepper in the pot.	A solid cone has base radius 5 cm and slant height 12 cm . Calculate the total surface area of the cone. Give your answers in terms of π	A container in the shape of a cone, base radius 10 cm and vertical height 19 cm , is full of water. The water is poured into an empty cylinder of radius 15 cm . How high is the water in the cylinder?
	A block of wood, 9 cm by 11 cm by 12 cm , has a hole of radius 2.5 cm drilled out. Calculate the mass of the wood if the density is $0.95 \mathrm{~g} / \mathrm{cm}^{3}$		A metal sphere of radius 15 cmismelted down and recast into a solids cylinder of radius 6 cm . Calculate the height of the cylinder	A square-based pyramid of length 12 cm and width 10 cm . If the weight is 828 g and density is $2.3 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the height of the pyramid.
		Calculate, to a suitable degree of accuracy, the radius of a sphere whose surface area is $150 \mathrm{~cm}^{2}$	Find the total surface area of a cone whose base radius is 3 cm and slant height is 5 cm . Give your answers in terms of π	A crystal is in the form of 2 square based pyramids joined together by their bases. The length of one of the sides of the base is 3 cm and the crystal's total height is 7 cm . The crystal has a mass of 31.5 g . What is the density?

THOUGHTS AND CROSSES

TOPIC: estimates and upper and lower bounds

$A B$	The density of kryptonite is $2489 \mathrm{~kg} / \mathrm{m} 3$. Writing your answers correct to an appropriate degree of accuracy, work out: (a) The mass of a piece of kryptonite which has a volume of 2.49 m 3 (b) The volume of a piece of kryptonite whose mass is 1199 kg .	$T=5.467 \times \sqrt{\frac{L}{g}}$ $L=2.36$ correct to 2 decimal places. $g=8.8$ correct to 1 decimal place. (a) Find the upper bound of T, giving your answer to 2 decimal places	$\begin{gathered} T=5.467 \times \sqrt{\frac{L}{g}} \\ L=2.36 \text { correct to } 2 \text { decimal places. } \\ g=8.8 \text { correct to } 1 \text { decimal place. } \end{gathered}$ (a) Find the lower bound of T, giving your answer to 2 decimal places
A	The area of a rectangle, correct to 2 significant figures, is 460 cm 2 . The length of the rectangle, correct to 2 significant figures, is 22 cm . Writing your answers correct to an appropriate degree of accuracy: (a) Calculate the upper bound for the width of the rectangle	$x=\frac{5.49 \times 12.28}{6.8}$ 5.49 and 12.28 are correct to 2 decimal places. 6.8 is correct to 1 decimal place. Write the calculation that gives the lower bound for x	$x=\frac{5.49 \times 12.28}{6.8}$ 5.49 and 12.28 are correct to 2 decimal places. 6.8 is correct to 1 decimal place. Write the calculation that gives the upper bound for x
	The maximum temperature in Salford last year was $25^{\circ} \mathrm{C}$ to the nearest ${ }^{\circ} \mathrm{C}$, and the minimum temperature was $7^{\circ} \mathrm{C}$ to the nearest ${ }^{\circ} \mathrm{C}$. Calculate the range of temperatures.	Sameera runs 100 m (to the nearest 10 m) in 12 seconds (correct to the nearest second). Last time she ran the race her maximum possible speed was 8.2 metres per second Can she be sure that she has run faster his time? Give a reason for this answer	Work out the value of $4.5^{2}-\sqrt{4.9}$ Write down all the figures on your calculator display. Write your answer to part correct to 4 significant figures.
\square	A sports commentator reported that 25000 people attended a snowboarding competition. The number of people had been rounded to the nearest 1000. (a) Write down the least possible number of people in the audience. (b) Write down the greatest possible number of people in the audience.	Juana walks 17000 steps every day, on average. She walks approximately 1 mile every 3500 steps. Work out an estimate for the average number of miles that Juana walks in one year.	Use your calculator to evaluate $\frac{36.2 \times 14.6}{22.4-12.9}$ (a) Write down all the figures on your calculator display (b) Write your answer to part (a) to an appropriate degree of accuracy.

THOUGHTS AND CROSSES

TOPIC: Pythagoras and trigonometry

A	In triangle $A B C$ $\begin{aligned} & A C=5 \mathrm{~cm} \\ & B C=9 \mathrm{~cm} \end{aligned}$ Angle $B A C=100^{\circ}$ Calculate the size of angle $A B C$.	In triangle $A B C$ (not accurately drawn) $A B=(2 x+1)$ metres. $B C=(x+4)$ metres. Angle $A B C=30^{\circ}$. The area of the triangle $A B C$ is 4 m 2 . Calculate the value of x. Give your answer correct to 3 significant figures.	In triangle $A B C$ $A C=8 \mathrm{~cm}, B C=14 \mathrm{~cm}$ and Angle $A C B=69^{\circ}$. Calculate the length of $A B$. Give your answer correct to 3 significant figures. Calculate the size of angle BAC.
B	$A B D$ and $B C D$ are two right angled triangles placed back to back. AB= $12 \mathrm{CM}, \mathrm{CD}=8 \mathrm{CM}$ AND $\angle B A D=30^{\circ}$ ADC is a straight line. Calculate the length of BC	The circles with centres A and B have radii of 10 cm and 6 cm respectively. The line segment $B C$ is a tangent to both circles.	$C D$ represents a vertical cliff 16 m high. A boat, B, is 25 m due east of D. Calculate the size of the angle of elevation of C from B. Give your answer correct to 3 significant figures. What is the angle of depression of B from C ? Give a mathematical reason for this.
C			A ladder 6.8 m long is leaning against a wall, as shown in the diagram. The foot of the ladder is 1.5 m from the wall. Calculate the distance the ladder reaches up the wall. Give your answer to a sensible degree of accuracy.

TOPIC: vectors

$\begin{aligned} & A \\ & * \end{aligned}$	ABCDEFGH is a regular octogan. $A B$ is represented by the vector a and $B C$ by the vector b. By means of a diagram or otherwise show that the vector $C D=\sqrt{ } 2 b-a$	In a scalene triangle ABC, the longer side is AC. There is a slightly shorter side $A B$ and then the final small side of $B C . M$ is the midpoint of line $B C$. Vector $\mathrm{AB}=\mathbf{s}$ and Vector $\mathrm{AC}=\mathbf{t}$ Find Vector AM in terms of s and t .	Write down $\overrightarrow{o c}$ in terms of \mathbf{a} and b . Write down $\overrightarrow{A B}$ in terms of a.
$\begin{aligned} & A \\ & * \end{aligned}$	The points P, Q, R lie on a straight line. The vector $P Q$ is $\mathbf{2 a + b}$ where a and b are vectors. Which of the following could be the vector PR? - $2 a+2 b$ - $4 a+2 b$ - 2a-b - - 6a-3b	The points P, Q,R lie on a straight line. The vector PQ is $3 \mathrm{a}-\mathrm{b}$ where a and b are vectors. Write down any other vector that could represent the vector PR? A second vector is PS How can you tell from the vector PS that S lies on the same straight line as P, Q, R ?	Use a vector diagram to show that $a+(b+c)=(a+b)+c$
A	A is the point $(3,2)$ and B is the point $(-1,0)$ (a) Find $\overrightarrow{A B}$ as a column vector. (b) C is a point such that $\overrightarrow{A C}=\binom{4}{9}$ Write down the co-ordinates of the point C.		Given that $a=\binom{4}{1} \quad b=\binom{1}{4} \quad c=\binom{-3}{1}$ Work out the following:- (a) $2 a$ (b) $a+2 b$ (c) $a-b+c$ (d) $2 a+b-c$ (e) $1 / 2 a$

THOUGHTS AND CROSSES

TOPIC: circle theorems

THOUGHTS AND CROSSES

TOPIC: angles

	A car takes 15 minutes to travel 24 miles. Find its speed in MPH	Jane runs 200 metres in 21.4 seconds Work out Jane's average speed in metres per second. Give your answer correct to 1dp.		The length of a swimming pool is 50 metres. Alex swims a total distance of 1.4 kilometres. How many lengths did Alex swim
	Change $2.8 \mathrm{~m}^{2}$ to cm^{2}.	Daniel leaves his house He drives 87 miles to He drives at an average spe per hour. At what time does Daniel	0. 36 miles work?	A plane flies 1440 miles at a speed of 240 mph . How long does it take?
	(a) Change 250 millimetres to centimetres (b) Change 3.7 litres to millilitres (c) Change 400 seconds to minutes and seconds	The weight of a smal bag of crisps The distance from Manchessestro to London The heighto of a man The volume of perto ina a car's perot tank	25 grams $328 . \ldots$ $183 \ldots$ $45 \ldots \ldots$	Estimate the height of the man, in metres Estimate the height of the giraffe, in metres.

